Amphipods & Copepods - 1000 (Gammarus Sp.)

Add to Cart



Shipping details
Frequently Bought Together:


Read more


What are Copepods?

1. If you want copepods in aquarium, it is crucial to understand what they are and what they do in their natural environment of the Ocean.  Copepods comprise 80% of the animal mass in water columns around the world. In marine environments, copepods have ~150 unique species. A copepod is a major part of the diet of many fish, seabirds, many other planktonic species as well as some great whales. The word copepod means "oar-feet" derived from the propulsion method used by the copepod to move through the water column. From copepod species which drift through the water column called planktonic where as some species are benthic, indicating they live on the ocean floor.

2. Copepods vary considerably in size however most are 1-2 mm with large antennae on a tear shaped body. Like other invertebrates, they have a hard exoskeleton; however the copepod exoskeleton is transparent. 

3. Copepods eat phytoplankton found in the water column, invisible to the naked eye. Benthic copepods live on the ocean floor, eat organic detritus, bacteria or algae with their mouth parts which have adapted for scraping and biting (this is the type we sell & they are ideal for a refugium or a tank with live rock).Live Copepods for Sale & Amphipods make Great Fish and Coral Food.

Why are Copepods so important?

1. Copepods are a carbon sink. To obtain such a title an organism must consume more carbon than it puts out. On a global scale, pods reduce carbon emissions by 1-2 billion tons annually.  In your aquarium, this means copepods & amphipods are an excellent way to naturally reduce waste naturally by growing and feeding copepods to your fish rather than using a prepared food, which if it is uneaten adds to the overall waste in your tank. Copepods, if uneaten, will continue to reduce overall waste levels instead of adding to them. WIN WIN!!

2. Live copepods are an essential part of the nutrition needed by your fish & corals. Copepods provide a whopping 50-55% protein.  Protein, as a building block for healthy DNA/RNA production are essential in providing fish and corals to grow, thrive & reproduce.

3. Copepods are an easy way to replicate the natural environment of your fish friends.  By adding diversity both as part of the clean up crew, as well as a much needed element nutritionally, copepods are the obvious choice for incorporating a healthy addition to your tank for live fish food.

4. Copepods are also an excellent way to feed your corals. LPS Corals like Lord Acans, Open Brains, Trachaphyllia, Lobophyllia, Duncan Corals, and many others love fresh pods.  Fat Head Dendrophyllia and Sun Corals will also enjoy a tasty treat of copepods & amphipods.  Once again the beauty of feeding live copepods to your corals is if uneaten, they will not create a negative deficit on your tank by leaving behind high nitrates and phosphates.  


  • We have no way of determining what percentage will be amphipods or copepods or what you are more likely to receive (amphipods or copepods).
  • Pods are small - some are very small - especially if they are "toddlers".
  • To ensure that you get what you pay for, we use a measurement that has been counted and observed for a greater portion than 1000 per bag. To confirm, please observe the shear amount of life in the bag you receive after you gently thump the bag with your finger.
  • The transport media will literally crawl with life, so enjoy and please let us know immediately if there is an issue with your shipment.

Whether you have been a hobbyist for many years or just starting out, copepods are the life blood of our water systems.  From freshwater, brackish and saltwater, copepods are the LARGEST biomass on the planet.  So it makes sense to have them in your saltwater aquarium. Most people only think of pods as a way to feed a hungry mandarin goby or seahorse.

Before you buy the amazing copepod for your fish, here are a few things to consider.  

1. What is the appropriate home for your pods?  If you have live rock in your tank, copepods & amphipods are very adapt at living in & around live rock.  They complement the aerobic bacteria living on the rock nicely.   If you have macro algae whether in your tank or in a refugium, coppods will thrive in that environment, as well.  If you presently do not have a place for a refugium, simply adding a small amount of chaeto to your overflow area will provide a very nice natural home for your copepods.  In a small tank we have, chaeto in our overflow box acts as both our protein skimmer as well as home for the pods.

2. Amphipods & Copepods reproduce every 7-10 days.  Therefore, given ample hiding areas, seeding a tank can occur within a few weeks.

3. Adding cope pods to your tank can be done in such a way to ensue a feeding frenzy.  Depending upon your goal take precautions.  Adding pods with lights out, or while fish are distracted with their normal dinner, will help eliminate the feeding frenzy, giving the pods the ability to seek cover and begin the work of seeding your tank.

4. When purchasing pods from, we offer a few options.  Based upon the size of the tank you want to seed as well as the number of hungry fish, we suggest the following:

Tanks under 20 gallons with 1 hungry mouth - 250 copepods & amphipods.  This is an excellent pack of pods.

Tanks 20 - 50 gallons with 1 hungry mouth 500 copepods and amphipods.  An excellent way to begin seeding your tank.  Depending upon the hiding spots within your tank, this blast of pods into your tank can begin the process nicely, provided the pods have sufficient areas to hide and reproduce.  

Tanks 50 ++ gallons with 1 - 3 hungry mouths - Our 1000 copepod/amphipod packages are an excellent choice.  The pods bags are brimming with pods as seen in the video below.

If you have more than 1 hungry mouth, add bags accordingly.  

Copepods are found in a wide range of aquatic environments and are often grouped together to serve complementary purposes within the controlled conditions of marine aquaria -- saltwater reef aquaria being an especially common aquarium environment -- there are many striking differences that serve to clearly distinguish one from the other.  Amphipods and copepods naturally share quite a few characteristics and behavioral traits since they are both classified under the Crustacea subphylum. 

In order to delineate the unique and contrasting traits and characteristics of the amphipod and copepod while also highlighting the commonalities between them, it is necessary to discuss each of these members of the Crustacea subphylum within the context of the following subcategories:

  • ● Anatomical and behavioral characteristics
  • ● Classification (specifically the orders, suborders and species associated with each)
  • ● History: Origins and fossil record
  • ● Ecological conditions
  • ● Practical behaviors and characteristics relevant to marine aquaria

The diversity of species falling within the Copepoda subclass and the Amphipoda order is especially noteworthy, and the presence of copepods is often used as an ecological indicator of biodiversity given its prevalence in so many different aquatic environments. Underscoring this diversity is the fact that, between copepods and amphipods, the size of the more than 20,000 different species can be anywhere from 1 millimeter to 340 millimeters. Copepods tend to occupy the smaller end of the range while amphipods are represented at both extremes.

Anatomical and Behavioral Characteristics


The anatomical characteristics of the amphipod feature three distinct groupings (abdomen, thorax and head) in which 13 segments are present. With its head fused to its thorax, the amphipod anatomy includes concealed mouthparts to go along with a single pair of sessile compound eyes and two pairs of antennae, the latter of which includes glands responsible for controlling the uptake and excretion of salts.

Amphipods lack the carapace typically found on a number of other crustaceans, and, despite the fact that many refer to amphipods as “freshwater shrimp,” its rear legs (uropods occurring in pairs of three, which, along with the telson, make up the urosome) do not create the tail fan common to shrimp. The pleosome complements the urosome as the other half of the amphipod’s abdomen and features the legs used for swimming purposes.

Eight pairs of uniramous appendages are requisite to the thorax, with the first pair serving as the accessory mouthparts. The four pairs that follow are directed toward the amphipod’s head while the remaining three pairs are directed toward the amphipod’s abdomen. The thorax also features an open circulatory system through which haemocyanin is utilized to deliver oxygen to the amphipod’s tissues. The thoracic segments of the amphipod also reveal the presence of gills.

Copepods, on the other hand, feature anatomical characteristics that vary quite considerably among the 10 orders that make up the Copepod subclass. The diminutive stature of the copepod (most fall within a range of 1 to 2 millimeters) causes its armored exoskeleton to be entirely transparent in most cases. The majority of copepods feature a compound eye in the center of its head -- with the eye typically colored bright red -- but there are copepods that also have two cuticular lenses as well as subterranean copepods that have no eyes at all.

Like the amphipod, copepods have two pairs of antennae and its head is typically fused with the thorax, which is typically divided into segments of three or five. While amphipods take in oxygen through an open circulatory system, most copepods absorb oxygen into their bodies without a heart or circulatory system. The small stature of the copepod also means that it is quite common for the anatomy to lack gills as well.

The behavior of the copepod is aided by the presence of highly organized myelin that surrounds neurons to increase conduction speed, thereby enabling the copepod to quickly react to and escape from predators. This is a very rare characteristic in any kind of invertebrate, but it does not make the copepod immune to predation: Seahorses approach copepods so deliberately that they avoid generating any turbulence at all, leaving the targeted copepod completely unaware of the presence of a predator.


Copepod food consists of phytoplankton, detritus and bacteria, but the specific dietary habits of each will depend on the species in question. The copepods typically found in marine aquaria usually favor a diet comprised of detritus as well as the bacteria often found within the detritus, utilizing the mouthparts that enable them to scrape and bite at the organic material. Copepods found in colder environments store energy within their tiny bodies by converting the food into oil droplets, with these droplets sometimes making up half of their bodily volume.

The majority of amphipods share the dietary characteristics of copepods, with most amphipods using the large claws located on the front pairs of legs to grasp and feed on organic detritus as well as algae and even smaller crustaceans or insects. The amphipods most skilled at predator avoidance are also those most likely to have access to a high-quality diet in which algae is the principal focus, though it should be noted that all amphipods are considered scavengers or, more specifically, detritivores. Amphipods found in Benthic ecosystems are critical to the suppression of brown algae growth and seem to prefer this type of algae to the green or red species found in this specific kind of ecosystem.

Life Cycle

Amphipod females carry their eggs in a brood pouch (also known as a marsupium) until they are fertilized and ready to hatch, with the total number of eggs produced by the female increasing with each subsequent brood. Amphipods bypass the larval stage and are hatched as juveniles, reaching maturity after, on average, six total molts.

Copepods, on the other hand, do have a larval stage and are thus hatched into the naupilius larvae that were once believed to be an entirely different species due to the drastic difference in appearance when contrasted with a mature copepod. The copepod reaches maturity after a total of approximately 10 molts, passing from the naupilius larval stage to the copepodid larval stage before achieving adulthood. Depending on the specific type of copepod, the entire process may take just a single week or may last as long as an entire year.

Classification: Orders, Suborders and Species

Amphipods and copepods are both members of the Crustacea subphylum. Amphipods, however, belong to the Malacostraca class while copepods belong to the Maxillopoda class. The diversity of species classified as amphipod or copepod is impressively vast, with well over 20,000 total species currently classified as either amphipod or copepod.

Copepods occupy a subclass composed of 10 orders with a total exceeding 13,000 different species. Of these 13,000 species, approximately 2,800 can be found within freshwater environments. The 10 orders falling under the Copepoda subclass include each of the following:

  • ● Calanoida
  • ● Cyclopoida
  • ● Gelyelloida
  • ● Harpacticoida
  • ● Misophrioida
  • ● Monstrilloida
  • ● Mormonilloida
  • ● Platycopioida
  • ● Poecilostomatoida
  • ● Siphonostomatoida

 With 9,500 total species falling under the Amphipoda order, amphipods are also quite diverse and include approximately 1,900 species inhabiting freshwater or non-marine environments. This includes some terrestrial species that are capable of survival in damp environments such as the various layers of decomposing organic material found in a forest floor.

Amphipods belong to the superorder of Peracarida and are typically divided among four suborders, although the classification has undergone revision in recent years with the Senticaudata suborder replacing the Caprellidea suborder. Following this 2013 revision, the suborders that make up the Amphipoda order are as follows:

  • ● Gammaridea
  • ● Senticaudata
  • ● Hyperiidea
  • ● Ingolfiellidea

Although there are 9,500 species classified within the Amphipoda order, only 40 of those species fall beneath the Ingolfiellidea suborder.

Origins and Fossil Record

The temporal range of both copepods and amphipods is thought to precede the available fossil record, but it is currently the case that both amphipods and copepods are classified as belonging to relatively recent epochs. The amphipod fossil record includes just 12 species found in Baltic amber and dated to the Upper Eocene, but it has been nonetheless asserted that amphipods originated long before the Upper Eocene during the Lower Carboniferous period of the geologic timescale. The same is true of copepods, with the origin being assigned as the Early Cretaceous despite the widespread belief that copepods originated during an earlier period on the geologic timescale.

Ecological Conditions: The Relationship Between Amphipods, Copepods, and the Environment

Amphipods and copepods both play essential ecological roles in the environments they inhabit, including marine (saltwater and freshwater) and non-marine ecological systems. Amphipods and copepods maintain a wide variety of symbiotic relationships and remain a critical component of the carbon cycle, not to mention the fact that they serve as a major source of food for all manner of marine and non-marine life. Planktonic copepods, for example, are a principal form of nourishment for whales, seabirds, Alaska Pollock, dragonets and krill.

The amphipod’s usual contribution to the ecosystem is the result of its status as a mesograzer, enabling it to serve as a control on the growth of certain kinds of algae. Since amphipods are found in marine environments ranging from freshwater to water sources with a salinity doubling the level found in seawater, they are a critical component of just about every ecosystem and contribute to a healthy level of biodiversity.

Copepods are similarly critical from an ecological perspective, with many experts believing that copepods form the greatest animal biomass on the planet. This volume is not only important given the role of copepods as a food source to both marine and non-marine life, but also because of how copepods function within the carbon cycle. Planktonic copepods contribute to the absorption of as much as one-third of human carbon emissions, and the manner in which they feed is responsible for making the surface layers of the ocean to be what many consider the world’s largest carbon sink.

Since copepods feed near the surface of the ocean during the nighttime hours when they are least visible to prey and then sink down to and occupy the lower depths during the daylight hours, planktonic copepods deliver carbon to the deep sea through respiration as well as through their molted exoskeletons and fecal pellets. The productivity of copepods in this regard is further enhanced by its small stature as well as its ability to quickly reproduce.

Practical Behaviors and Marine Aquaria

Copepods and amphipods are often included within marine aquaria, with hobbyists featuring these crustaceans for a wide variety of reasons. The scavenging and foraging behaviors exhibited by copepods and amphipods frequently serve as a primary reason cited by marine aquaria hobbyists, but copepods and amphipods often contribute a great deal more beyond their scavenging and foraging habits.

Saltwater aquaria hobbyists often include both amphipods and copepods within their tanks to add to the overall biodiversity of the contained marine ecosystem, and the amphipods and copepods will contribute to the cleanliness of the tank as they scavenge and forage for the detritus left behind by the other tank inhabitants. Since algae is a common source of food for amphipods and copepods, many hobbyists enduring issues with algae growth will introduce amphipods and copepods as a biological control.

Copepods and amphipods are also utilized as a source of food in marine aquaria, especially for saltwater aquaria featuring species known for their difficult dietary preferences. Seahorses and mandarin dragonets, for example, are known to feed on copepods and amphipods, and most saltwater aquaria hobbyists consider the addition of copepods and amphipods entirely beneficial from any number of other perspectives.


Customers Also Viewed

Did you know?
As the coral reefs of the world become more endangered, addressing sustainability is the number one concern among coral growers. has been a certified aquaculture facility since 2011. Since receiving our certification, AquariumDepot has increased the number of sustainable products to the marketplace by 90 percent. We also support organizations like, who work directly with conservation groups to sustain the animals and their homes.